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Spline path family
For any 1(t) = (n0(t), n1(t)) where n(0) = (1,0), n(1) = (0, 1) we can generate an
annealing path:

Suboptimality of linear path

Linear path is suboptimal even in the space of Gaussian distributions.

Summary

Parallel tempering (PT) is a class of MCMC algorithms that constructs a path of
distributions annealing between a tractable reference, mo, and intractable target, 1,

and then interchanges states along the path to improve mixing in the target.
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Given K > 2, we can optimize over the annealing path family generated by 7(%) in
the set of linear splines with K knots.

Proposition: Suppose my = N(ug,0°)and m = N (1, 0%) with 2z = |1 — pol /o,
thenas z — oo :

Problem: Past work on P1 has only used a suboptimal linear paths constructed

from convex combinations of the reference and target log-densities.
1. For the linear path 7 = ©(1/2)
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Optimized Path

2.3 a non-linear annealing path in the space of Gaussians with 7 = €2(1/ log z)
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Linear (K = 1)

Spline (K = 2)

Spline (K = 3)
—— Spline (K = 4)
—— Spline (K = 5)
— Spline (K = 10)

Annealing path: 7; is a path of distributions continuously deforming between 7
and miatt =0,1
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Optimized path flattens
distributions to improve overlap

raditionally a Linear path is used: () wo(at)l_tm (a;)t 02 02
Linear Path o 00 | | | 1
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8 Very littlo overlap between Communication barrier of annealing path
§§ adjacent distributions The round trip rate is sensitive to both the path and schedule. We need an Experiments
02 objective for just the path that is robust to the choice of schedule.
’ Optimized spline path beats the theoretically optimal performance of the

N Theorem: Given a path 7, thereisa A > 0 such thatas N — oo,
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Fix an annealing schedule Tv = (tn),—0 of interpolating points on the path. inear path and significantly improves upon the state-of-the-art PT methods.

T(Tn) — (24 2A) 7 =0

lim  su
D=t <1 < - <ty =1, 5—>OTN;||T£||§5

Run IV + 1 chains In parallel targeting 7¢,, along each path and alternate between | N
local exploration and communication moves. If we define A(Tn) = )_,,—¢ ", then

[ Tw|| = max |ty i1 — t|
Bayesian mixture model
(Galaxy Dataset, d = 94)

Gaussian
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-------- Linear Path Barrier

— — NRPT + Linear

— - — Reversible + Linear

A —A(Tn)| =0

lim  sup
0=0 7| T || <6

Local exploration: Update each chain according to an MCMC algorithm targeting

distribution 7¢,, (problem specific)
A is called the global communication barrier (GCB) and controls the asymptotic

efficiency of PI. Intuitively can be thought of as the "length” of the path .
Path optimization

Given a family of annealing paths {7 f }sea, for large N, the round trip rate is
maximized when A? is minimized. The GCB satisfies,

Round Trips

Communication: Propose swap between chains n and n + 1 and accept with
Metropolis-Hastings acceptance probability &n
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Round Trips
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High-dimensional scaling
High-dimensional Gaussian

Admits tractable

s 2 N-1 — o P
2A?(Tn)" < N 2o SKL(m,,, 7t,,4,) = LP(TN) gradient estimates

mo = N (=14, (0.1)°1,)

Algorithm: m = N(14,(0.1)°Iy)
1) Given T, @, run non-reversible PT algorithm (NRPT) (Syed et al. 2019) Ontimized ol fh scal

) Use samples to update schedule Tx using procedure in (Syed et al. 2019) beﬁtlg?ltzrweans\ggj pzth ?;ratfwz N \
) deate ¢ with gradient decent with loss »Cqb(’];;,) P e Li?‘tlenai (Pat?w B;rrier \
)

, | | same computational budget as — — NRPT + Linear \
4) Repeat 1-3 until computational budget is depleted. dimension increases. 107 , S S

Dimension

Objective: \Want to maximize the round trip rate, 7(7x), the fraction of samples
from the reference that reach the target. Round trip rate satisfies [Syed et al. 2019]

N-1 o —1
T(Tn) = (2—|—ZZ 1_nr ) , 1 =1—Ela,]
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Round Trip Rate

oy

E-Mail: saif.syed@stat.ubc.ca

1 UBC Department of Statistics, * Equal contribution



